Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 56(5): 4600-4618, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35841189

RESUMO

The neurochemical mechanisms underlying motor memory consolidation remain largely unknown. Based on converging work showing that ethyl alcohol retrogradely enhances declarative memory consolidation, this work tested the hypothesis that post-learning alcohol ingestion would enhance motor memory consolidation. In a within-subject and fully counterbalanced design, participants (n = 24; 12M; 12F) adapted to a gradually introduced visual deviation and ingested, immediately after adaptation, a placebo (PBO), a medium (MED) or high (HIGH) dose of alcohol. The alcohol doses were bodyweight- and gender-controlled to yield peak breath alcohol concentrations of 0.00% in the PBO, ~0.05% in the MED and ~0.095% in the HIGH condition. Retention was evaluated 24 h later through reach aftereffects when participants were sober. The results revealed that retention levels were neither significantly nor meaningfully different in both the MED and HIGH conditions as compared to PBO (all absolute Cohen's dz values < ~0.2; small to negligible effects), indicating that post-learning alcohol ingestion did not alter motor memory consolidation. Given alcohol's known pharmacological GABAergic agonist and NMDA antagonist properties, one possibility is that these neurochemical mechanisms do not decisively contribute to motor memory consolidation. As converging work demonstrated alcohol's retrograde enhancement of declarative memory, the present results suggest that distinct neurochemical mechanisms underlie declarative and motor memory consolidation. Elucidating the neurochemical mechanisms underlying the consolidation of different memory systems may yield insights into the effects of over-the-counter drugs on everyday learning and memory but also inform the development of pharmacological interventions seeking to alter human memory consolidation.


Assuntos
Consolidação da Memória , Consumo de Bebidas Alcoólicas , Ingestão de Alimentos , Etanol/farmacologia , Humanos , Aprendizagem , Destreza Motora
2.
Neuropsychopharmacology ; 47(12): 2101-2110, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35701548

RESUMO

The ingestion of alcohol yields acute biphasic subjective effects: stimulation before sedation. Despite their predictive relevance to the development of alcohol use disorders (AUD), the neurobiological markers accounting for the biphasic effects of alcohol remain poorly understood in humans. Informed by converging lines of evidence, this study tested the hypothesis that alcohol ingestion acutely increases gamma-aminobutyric acid (GABA)-mediated inhibition, which would positively and negatively predict the feeling of stimulation and sedation, respectively. To do so, healthy participants (n = 20) ingested a single dose of 94% ABV alcohol (males: 1.0 ml/kg; females: 0.85 ml/kg) in a randomized placebo-controlled cross-over design. The alcohol's biphasic effects were assessed with the Brief-Biphasic Alcohol Effects Scale, and non-invasive neurobiological markers were measured with transcranial magnetic stimulation, before and every 30 min (up to 120 min) after the complete ingestion of the beverage. Results showed that acute alcohol ingestion selectively increased the duration of the cortical silent period (CSP) as compared to placebo, suggesting that alcohol increases non-specific GABAergic inhibition. Importantly, CSP duration positively and negatively predicted increases in the feeling of stimulation and sedation, respectively, suggesting that stimulation emerges as GABAergic inhibition increases and that sedation emerges as GABAergic inhibition returns to baseline values. Overall, these results suggest that modulations of GABAergic inhibition are central to the acute biphasic subjective effects of alcohol, providing a potential preventive target to curb the progression of at-risk individuals to AUD.


Assuntos
Alcoolismo , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Estudos Cross-Over , Etanol/farmacologia , Feminino , Humanos , Inibição Psicológica , Masculino , Ácido gama-Aminobutírico
3.
J Neurosci ; 39(6): 1044-1057, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30541913

RESUMO

Locomotion occurs sporadically and needs to be started, maintained, and stopped. The neural substrate underlying the activation of locomotion is partly known, but little is known about mechanisms involved in termination of locomotion. Recently, reticulospinal neurons (stop cells) were found to play a crucial role in stopping locomotion in the lamprey: their activation halts ongoing locomotion and their inactivation slows down the termination process. Intracellular recordings of these cells revealed a distinct activity pattern, with a burst of action potentials at the beginning of a locomotor bout and one at the end (termination burst). The termination burst was shown to be time linked to the end of locomotion, but the mechanisms by which it is triggered have remained unknown. We studied this in larval sea lampreys (Petromyzon marinus; the sex of the animals was not taken into account). We found that the mesencephalic locomotor region (MLR), which is known to initiate and control locomotion, stops ongoing locomotion by providing synaptic inputs that trigger the termination burst in stop cells. When locomotion is elicited by MLR stimulation, a second MLR stimulation stops the locomotor bout if it is of lower intensity than the initial stimulation. This occurs for MLR-induced, sensory-evoked, and spontaneous locomotion. Furthermore, we show that glutamatergic and, most likely, monosynaptic projections from the MLR activate stop cells during locomotion. Therefore, activation of the MLR not only initiates locomotion, but can also control the end of a locomotor bout. These results provide new insights onto the neural mechanisms responsible for stopping locomotion.SIGNIFICANCE STATEMENT The mesencephalic locomotor region (MLR) is a brainstem region well known to initiate and control locomotion. Since its discovery in cats in the 1960s, the MLR has been identified in all vertebrate species tested from lampreys to humans. We now demonstrate that stimulation of the MLR not only activates locomotion, but can also stop it. This is achieved through a descending glutamatergic signal, most likely monosynaptic, from the MLR to the reticular formation that activates reticulospinal stop cells. Together, our findings have uncovered a neural mechanism for stopping locomotion and bring new insights into the function of the MLR.


Assuntos
Tronco Encefálico/fisiologia , Locomoção/fisiologia , Potenciais de Ação/fisiologia , Animais , Fenômenos Biomecânicos , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Lampreias/fisiologia , Masculino , Mesencéfalo/fisiologia , Microeletrodos , Neurotransmissores/fisiologia , Natação/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...